Angiotensin II-dependent hypertension increases Na transport-related oxygen consumption by the thick ascending limb.

نویسندگان

  • Guillermo B Silva
  • Jeffrey L Garvin
چکیده

Renal medullary superoxide (O(2)(-)) increases in angiotensin (Ang) II-dependent hypertension. O(2)(-) increases thick ascending limb Na transport, but the effect of Ang II-dependent hypertension on the thick ascending limb is unknown. We hypothesized that Ang II-dependent hypertension increases thick ascending limb NaCl transport because of enhanced O(2)(-) production and increased protein kinase C (PKC) alpha activity. We measured the effect of Ang II-dependent hypertension on furosemide-sensitive oxygen consumption (a measure of Na transport), O(2)(-) production, and PKCalpha translocation (a measure of PKCalpha activity) in thick ascending limb suspensions. Ang II-dependent hypertension increased furosemide-sensitive oxygen consumption (26.2+/-1.0% versus 36.6+/-1.2% of total oxygen consumption; P<0.01). O(2)(-) was also increased (1.1+/-0.2 versus 3.2+/-0.5 nmol of O(2)(-)/min per milligram of protein; P<0.03) in thick ascending limbs. Unilateral renal infusion of Tempol decreased O(2)(-) (2.4+/-0.4 versus 1.2+/-0.2 nmol of O(2)(-)/min per milligram of protein; P<0.04) and furosemide-sensitive oxygen consumption (32.8+/-1.3% versus 24.0+/-2.1% of total oxygen consumption; P<0.01) in hypertensive rats. Tempol did not affect O(2)(-) or furosemide-sensitive oxygen consumption in normotensive controls and did not alter systolic blood pressure. Ang II-dependent hypertension increased PKCalpha translocation (5.7+/-0.3 versus 13.8+/-1.4 AU per milligram of protein; P<0.01). Unilateral renal infusion of Tempol reduced PKCalpha translocation (5.0+/-0.9 versus 10.4+/-2.6 AU per milligram of protein; P<0.04) in hypertensive rats. Unilateral renal infusion of the PKCalpha inhibitor Gö6976 reduced furosemide-sensitive oxygen consumption (37.4+/-1.5% versus 25.1+/-1.0% of total oxygen consumption; P<0.01) in hypertensive rats. We conclude that Ang II-dependent hypertension enhances thick ascending limb Na transport-related oxygen consumption by increasing O(2)(-) and PKCalpha activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin II-induced hypertension increases plasma membrane Na pump activity by enhancing Na entry in rat thick ascending limbs.

Thick ascending limbs (TAL) reabsorb 30% of the filtered NaCl load. Na enters the cells via apical Na-K-2Cl cotransporters and Na/H exchangers and exits via basolateral Na pumps. Chronic angiotensin II (ANG II) infusion increases net TAL Na transport and Na apical entry; however, little is known about its effects on the basolateral Na pump. We hypothesized that in rat TALs Na pump activity is e...

متن کامل

Extracellular ATP inhibits transport in medullary thick ascending limbs: role of P2X receptors.

Absorption of NaCl by the thick ascending limb (TAL) involves active transport and therefore depends on oxidative phosphorylation. Extracellular ATP has pleiotropic effects, including both stimulation and inhibition of transport and inhibition of oxidative phosphorylation. However, it is unclear whether ATP alters TAL transport and how this occurs. We hypothesized that ATP inhibits TAL Na absor...

متن کامل

NADPH oxidase and PKC contribute to increased Na transport by the thick ascending limb during type 1 diabetes.

Type 1 diabetes triggers protein kinase C (PKC)-dependent NADPH oxidase activation in the renal medullary thick ascending limb (mTAL), resulting in accelerated superoxide production. As acute exposure to superoxide stimulates NaCl transport by the mTAL, we hypothesized that diabetes increases mTAL Na(+) transport through PKC-dependent and NADPH oxidase-dependent mechanisms. An O(2)-sensitive fl...

متن کامل

Bradykinin regulates cyclooxygenase-2 in rat renal thick ascending limb cells.

Cyclooxygenase-2 (COX-2) is constitutively expressed in a subset of thick ascending limb cells in the cortex and medulla and increases when the renin-angiotensin and kallikrein-kinin systems are activated. Although the contribution of angiotensin II to the regulation of COX-2 is known, the effects of bradykinin on COX-2 expression have not been determined in this nephron segment. We evaluated e...

متن کامل

Angiotensin II-induced hypertension blunts thick ascending limb NO production by reducing NO synthase 3 expression and enhancing threonine 495 phosphorylation.

Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 52 6  شماره 

صفحات  -

تاریخ انتشار 2008